ar X iv : m at h / 04 11 51 3 v 2 [ m at h . A P ] 1 4 A pr 2 00 5 NONLINEAR HYPERBOLIC EQUATIONS IN INFINITE HOMOGENEOUS WAVEGUIDES

نویسندگان

  • JASON METCALFE
  • CHRISTOPHER D. SOGGE
  • ANN STEWART
چکیده

In this paper we prove global and almost global existence theorems for nonlinear wave equations with quadratic nonlinearities in infinite homogeneous waveguides. We can handle both the case of Dirichlet boundary conditions and Neu-mann boundary conditions. In the case of Neumann boundary conditions we need to assume a natural nonlinear Neumann condition on the quasilinear terms. The results that we obtain are sharp in terms of the assumptions on the dimensions for the global existence results and in terms of the lifespan for the almost global results. For nonlinear wave equations, in the case where the infinite part of the waveguide has spatial dimension three, the hypotheses in the theorem concern whether or not the Laplacian for the compact base of the waveguide has a zero mode or not.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 11 51 3 v 1 [ m at h . A P ] 2 3 N ov 2 00 4 NONLINEAR HYPERBOLIC EQUATIONS IN INFINITE HOMOGENEOUS WAVEGUIDES

In this paper we prove global and almost global existence theorems for nonlinear wave equations with quadratic nonlinearities in infinite homogeneous waveguides. We can handle both the case of Dirichlet boundary conditions and Neu-mann boundary conditions. In the case of Neumann boundary conditions we need to assume a natural nonlinear Neumann condition on the quasilinear terms. The results tha...

متن کامل

ar X iv : m at h / 05 04 16 3 v 1 [ m at h . D G ] 8 A pr 2 00 5 AFFINE CURVATURE HOMOGENEOUS 3 - DIMENSIONAL LORENTZ MANIFOLDS

We study a family of 3-dimensional Lorentz manifolds. Some members of the family are 0-curvature homogeneous, 1-affine curvature homogeneous , but not 1-curvature homogeneous. Some are 1-curvature homogeneous but not 2-curvature homogeneous. All are 0-modeled on indecomposible local symmetric spaces. Some of the members of the family are geodesically complete, others are not. All have vanishing...

متن کامل

ar X iv : m at h / 04 02 28 2 v 2 [ m at h . D G ] 5 A pr 2 00 4 COMPLETE CURVATURE HOMOGENEOUS PSEUDO - RIEMANNIAN MANIFOLDS

We exhibit 3 families of complete curvature homogeneous pseudo-Riemannian manifolds which are modeled on irreducible symmetric spaces and which are not locally homogeneous. All of the manifolds have nilpotent Jacobi operators; some of the manifolds are, in addition, Jordan Osserman and Jordan Ivanov-Petrova.

متن کامل

ar X iv : m at h / 01 04 17 8 v 1 [ m at h . N T ] 1 8 A pr 2 00 1 Arithmetic theory of q - difference equations

Part II. p-adic methods §3. Considerations on the differential case §4. Introduction to p-adic q-difference modules 4.1. p-adic estimates of q-binomials 4.2. The Gauss norm and the invariant χv(M) 4.3. q-analogue of the Dwork-Frobenius theorem §5. p-adic criteria for unipotent reduction 5.1. q-difference modules having unipotent reduction modulo ̟v 5.2. q-difference modules having unipotent redu...

متن کامل

ar X iv : m at h / 02 04 00 7 v 3 [ m at h . C O ] 1 4 M ay 2 00 2 Fat 4 - polytopes and fatter 3 - spheres

We introduce the fatness parameter of a 4-dimensional polytope P, defined as φ(P) = ( f1 + f2)/( f0 + f3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness φ(P) > 5.048, as well as the first infinite family of 2-simple, 2-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005